Mass flows and other hydrodynamic consequences of small and moderate earthquakes in the Sea of Marmara

Pierre Henry∗1, Sinan Özeren2, Nurettin Yakupoğlu3, Ziyadin Cakir4, Emmanuel De Saint-Léger5, Olivier Deprez De Gésincourt5, Anders Tengberg6, Cristele Chevalier7, Christos Papoutsellis8, Nazmi Postacıoğlu9, Uğur Dogan9, Hayrullah Karabulut10, Gülsen Uçarkuş3, and M. Namik Cagatay3

1(b) Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence – Aix Marseille Université (Aix-en-Provence) – France
2Istanbul Technical University, Eurasia Institute of Earth Science – Turkey
3Istanbul Technical University, Geological Engineering Department, EMÇOL Applied Research Center, Faculty of Mines, Ayazağa, 34469 İstanbul, Turkey – Turkey
4Istanbul Technical University – Turkey
5INSU Division Technique de l’INSU [Site de Brest] – Centre National de la Recherche Scientifique, Institut National des Sciences de l’Univers – France
6Aanderaa Data Instruments AS, Bergen – Norway
7Institut méditerranéen d’océanologie – Institut de Recherche pour le Développement : UMR7294, AixMarseilleUniversité : UMR110, InstitutNationaldesSciencesdesUnivers : UMR7294, CentreNationaldelRechercheScientifique : UMR7294, UniversitédeToulon : UMR7294 – – France
8Institut de Recherche Dupuy de Lôme – Centre National de la Recherche Scientifique : UMR6027 / FRE3744 – France
9Yıldız Technical University – Turkey
10Boğaziçi University, Kandilli Observatory and Earthquake Research Institute – Çengelköy İstanbul 34684, Turkey

Abstract

Earthquake-induced submarine slope destabilization is known to cause mass wasting and turbidity currents, but the hydrodynamic processes associated with these events remain poorly understood. Instrumental records are rare and this notably limits our ability to interpret marine paleoseismological sedimentary records. An instrumented frame comprising a pressure recorder and a Doppler recording current meter deployed at the seafloor in the Sea of Marmara Central Basin recorded the consequences of a MW = 5.8 earthquake occurring Sept 26, 2019 and of a Mw = 4.7 foreshock two days before. The smaller event caused sediment resuspension and weak current (< 4 cm/s) in the water column. The larger event triggered a complex response involving a debris flow and turbidity currents with variable velocities and orientations, which may result from multiple slope failures. A long delay of 10 hours is observed between the earthquake and the passing of the strongest turbidity current.

∗Speaker

sciencesconf.org:emsomarmara:424621
The distance travelled by the sediment particles during the event is estimated to several kilometres, which could account for a local deposit on a sediment fan at the outlet of a canyon (where the instrument was located), but not for the covering of the whole basin floor. We show that after a moderate earthquake, delayed turbidity current initiation may occur, possibly by ignition of a cloud of resuspended sediment.